A cooperative constructive method for neural networks for pattern recognition

نویسندگان

  • Nicolás García-Pedrajas
  • Domingo Ortiz-Boyer
چکیده

In this paper, we propose a new constructive method, based on cooperative coevolution, for designing automatically the structure of a neural network for classification. Our approach is based on a modular construction of the neural network by means of a cooperative evolutionary process. This process benefits from the advantages of coevolutionary computation as well as the advantages of constructive methods. The proposed methodology can be easily extended to work with almost any kind of classifier. The evaluation of each module that constitutes the network is made using a multiobjective method. So, each new module can be evaluated in a comprehensive way, considering different aspects, such as performance, complexity, or degree of cooperation with the previous modules of the network. In this way, the method has the advantage of considering not only the performance of the networks, but also other features. The method is tested on 40 classification problems from the UCI machine learning repository with very good performance. The method is thoroughly compared with two other constructive methods, cascade correlation and GMDH networks, and other classification methods, namely, SVM, C4.5, and k nearest-neighbours, and an ensemble of neural networks constructed using four different methods. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Distribution Systems Reconfiguration Using Pattern Recognizer Neural Networks

A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

LIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK

In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007